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A spatial and temporal analysis in healthy humans

Background

Bifrontal transcranial direct current stimulation (tDCS) applied over the dorsolateral prefrontal
cortex (DLPFC) is associated with clinical improvements in several psychiatric conditions sharing
disturbances in dopamine transmission. However, despite an increasing use in clinical settings,
spatial and temporal neurobiological effects of tDCS are far from being completely understood.
Some imaging reports reveal that tDCS neurobiological effects are not restricted to the brain areas
located under the electrodes and may reach subcortical dopaminergic areas. Moreover, some
offline studies suggest that cortical stimulation by other approaches, such as transcranial magnetic
stimulation may evoke a subcortical dopamine release following a single session applied over the
left dorso-lateral prefrontal cortex (DLPFC) (Brunelin et al, 2011, Strafella et al, 2001). Thus, we
hypothesize that bifrontal tDCS can modulate dopaminergic transmission, specifically in the ventral

striatum, during and after the stimulation.
Objectives

The aim of this study was to test, in healthy subjects, the effects of a single-session of bifrontal
tDCS with the anode over the left DLPFC and the cathode over the right DLPFC on the subcortical
dopaminergic transmission. These effects were explored online by positron emission tomography
(PET) using dopaminergic D2 subtype receptor availability via ['"C]raclopride binding.
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Subcortical dopamine analysis - Example

1) Kinetic Analysis (1 timepoint per 5 minutes)

= Extraction of time activity curve (TACs)
In the region of interest (striatum) and reference region (cerebellum)
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2) Voxel-based analysis
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= Parametric Ratio Images for each time period (baseline, stimulation, post 1, post 2)
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Subregions of the striatum

Preprocessing (movement correction, coregistration, smoothing-8mm and normalization) were performed
using an in-house script combining SPM12, Turku and minc tools.
Regions were determined based on the adult brain atlas developed by A. Hammers et al. (2003)
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Dopamine transmission is increased in

the striatum after bifrontal tDCS

Parametric Analysis - Significant clusters
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1) Effects during stimulation
» No difference between the stimulation and baseline period

2) Acute after-effects (Post 1)

» BP decrease during the 5 to 20 minute period (Post 1) following the stimulation
In the striatum, compared to the stimulation period
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3) Subsequent after-effects (Post 2)
» BPy decrease during the 20 to 35 minutes period (Post 2) following the stimulation
In the striatum, compared to the baseline and stimulation period
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Analysis were performed on SPM12 with a flexible factorial design (Group * Time period), in the striatum.
Significant clusters from the parametric analysis (P ,corecteq < 0-001, k>4) were selected
then a TAC extraction was done for each cluster. The BPg relative variations were calculated for each contrast.

Discussion
/Areas of significant changes showed BPg decreases in striatal subregions and specifically the\
ventral parts of the striatum (left and right ventral caudate nucleus, left ventral rostral putamen,
right nucleus accumbens) when comparing the acute and subsequent effects of active and
sham tDCS groups. However, no effects during bifrontal tDCS were observed.

These results suggest that tDCS induces subcortical dopamine release specifically in the
limbic and executive parts of the striatum (areas delimited by Martinez et al, 2003).

Further studies are needed to study the impact of repeated bifrontal tDCS on dopaminergic
ktransmission In psychiatric conditions. Y,
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